Theorem 1. (Error in the Euler Method) Suppose that the initial value problem

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0$$

has a unique solution y(x) on the closed interval [a, b] with $a = x_0$ and assume that y has a continuous second derivative on [a, b]. Then there exists a constant $C \in \mathbb{R}$ such that if y_1, \ldots, y_k are the approximations (with the Euler Method) to the actual values $y(x_1), \ldots, y(x_k)$, then

$$|y_n - y(x_n)| \le Ch$$
,

where h > 0 is the step size and this holds for all n = 1, 2, ..., k.

The Improved Euler Method. Given the initial value problem

$$\frac{dy}{dx} = f(x, y), \quad y(x_0) = y_0,$$

the improved Euler method with step size h consists in applying the iterative formulas

$$k_{n,1} = f(x_n, y_n)$$

$$u_{n+1} = y_n + h \cdot k_1$$

$$k_{n,2} = f(x_{n+1}, u_{n+1})$$

$$y_{n+1} = y_n + h \cdot \frac{1}{2}(k_1 + k_2)$$

to compute successive approximation y_1, y_2, y_3, \ldots to the true values $y(x_1), y(x_2), y(x_3), \ldots$

Exercise 1. Use the improved Euler method to approximate the solution to

$$\frac{dy}{dx} = x + y, \quad y(0) = 1$$

with step size h = 0.1 on the interval [0,0.5]. Given that the exact solution is $y(x) = 2e^x - x - 1$ find the error in this approximation.

$$h=0.1$$

 $x_0=0$ $y_0=1$ $K_{0,1}=1$ $u_1=1.1$ $K_{0,2}=1.2$, Mayor
 $x_1=0.1$ $y_1=1.11$ $u_1=1.1$ $u_2=1.231$
 $x_7=6.2$ $y_2=1.2470S$ - .

Exercise	1.	(Continued)
DVCI CIOC		Communica

See Figure 2.S. 40n pg. 120.

Rutte-Kunge Method. See section 2.6 for another approximation known as the Rutte-Kunge Method.